Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Functional analysis of the Kunitz trypsin inhibitor family in poplar reveals biochemical diversity and multiplicity in defense against herbivores.

Identifieur interne : 003918 ( Main/Exploration ); précédent : 003917; suivant : 003919

Functional analysis of the Kunitz trypsin inhibitor family in poplar reveals biochemical diversity and multiplicity in defense against herbivores.

Auteurs : Ian T. Major [Canada] ; C Peter Constabel

Source :

RBID : pubmed:18024557

Descripteurs français

English descriptors

Abstract

We investigated the functional and biochemical variability of Kunitz trypsin inhibitor (KTI) genes of Populus trichocarpa x Populus deltoides. Phylogenetic analysis, expressed sequence tag databases, and western-blot analysis confirmed that these genes belong to a large and diverse gene family with complex expression patterns. Five wound- and herbivore-induced genes representing the diversity of the KTI gene family were selected for functional analysis and shown to produce active KTI proteins in Escherichia coli. These recombinant KTI proteins were all biochemically distinct and showed clear differences in efficacy against trypsin-, chymotrypsin-, and elastase-type proteases, suggesting functional specialization of different members of this gene family. The in vitro stability of the KTIs in the presence of reducing agents and elevated temperature also varied widely, emphasizing the biochemical differences of these proteins. Significantly, the properties of the recombinant KTI proteins were not predictable from primary amino acid sequence data. Proteases in midgut extracts of Malacosoma disstria, a lepidopteran pest of Populus, were strongly inhibited by at least two of the KTI gene products. This study suggests that the large diversity in the poplar (Populus spp.) KTI family is important for biochemical and functional specialization, which may be important in the maintenance of pest resistance in long-lived plants such as poplar.

DOI: 10.1104/pp.107.106229
PubMed: 18024557
PubMed Central: PMC2259082


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Functional analysis of the Kunitz trypsin inhibitor family in poplar reveals biochemical diversity and multiplicity in defense against herbivores.</title>
<author>
<name sortKey="Major, Ian T" sort="Major, Ian T" uniqKey="Major I" first="Ian T" last="Major">Ian T. Major</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Forest Biology and Department of Biology, University of Victoria, Victoria, BC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Centre for Forest Biology and Department of Biology, University of Victoria, Victoria, BC</wicri:regionArea>
<wicri:noRegion>BC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Constabel, C Peter" sort="Constabel, C Peter" uniqKey="Constabel C" first="C Peter" last="Constabel">C Peter Constabel</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="RBID">pubmed:18024557</idno>
<idno type="pmid">18024557</idno>
<idno type="doi">10.1104/pp.107.106229</idno>
<idno type="pmc">PMC2259082</idno>
<idno type="wicri:Area/Main/Corpus">003A15</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003A15</idno>
<idno type="wicri:Area/Main/Curation">003A15</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003A15</idno>
<idno type="wicri:Area/Main/Exploration">003A15</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Functional analysis of the Kunitz trypsin inhibitor family in poplar reveals biochemical diversity and multiplicity in defense against herbivores.</title>
<author>
<name sortKey="Major, Ian T" sort="Major, Ian T" uniqKey="Major I" first="Ian T" last="Major">Ian T. Major</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Forest Biology and Department of Biology, University of Victoria, Victoria, BC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Centre for Forest Biology and Department of Biology, University of Victoria, Victoria, BC</wicri:regionArea>
<wicri:noRegion>BC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Constabel, C Peter" sort="Constabel, C Peter" uniqKey="Constabel C" first="C Peter" last="Constabel">C Peter Constabel</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="ISSN">0032-0889</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Animals (MeSH)</term>
<term>Gastrointestinal Tract (enzymology)</term>
<term>Gene Expression Regulation, Developmental (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genetic Variation (MeSH)</term>
<term>Host-Parasite Interactions (genetics)</term>
<term>Larva (enzymology)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Moths (enzymology)</term>
<term>Multigene Family (MeSH)</term>
<term>Peptides (genetics)</term>
<term>Peptides (metabolism)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Populus (genetics)</term>
<term>Populus (metabolism)</term>
<term>Populus (parasitology)</term>
<term>Protease Inhibitors (metabolism)</term>
<term>Recombinant Proteins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Famille multigénique (MeSH)</term>
<term>Inhibiteurs de protéases (métabolisme)</term>
<term>Interactions hôte-parasite (génétique)</term>
<term>Larve (enzymologie)</term>
<term>Papillons de nuit (enzymologie)</term>
<term>Peptides (génétique)</term>
<term>Peptides (métabolisme)</term>
<term>Populus (génétique)</term>
<term>Populus (métabolisme)</term>
<term>Populus (parasitologie)</term>
<term>Protéines recombinantes (métabolisme)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Régulation de l'expression des gènes au cours du développement (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Tube digestif (enzymologie)</term>
<term>Variation génétique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Peptides</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Larve</term>
<term>Papillons de nuit</term>
<term>Tube digestif</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Gastrointestinal Tract</term>
<term>Larva</term>
<term>Moths</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Host-Parasite Interactions</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Interactions hôte-parasite</term>
<term>Peptides</term>
<term>Populus</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Peptides</term>
<term>Plant Proteins</term>
<term>Populus</term>
<term>Protease Inhibitors</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Inhibiteurs de protéases</term>
<term>Peptides</term>
<term>Populus</term>
<term>Protéines recombinantes</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="parasitologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="parasitology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Gene Expression Regulation, Developmental</term>
<term>Gene Expression Regulation, Plant</term>
<term>Genetic Variation</term>
<term>Molecular Sequence Data</term>
<term>Multigene Family</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Données de séquences moléculaires</term>
<term>Famille multigénique</term>
<term>Régulation de l'expression des gènes au cours du développement</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Séquence d'acides aminés</term>
<term>Variation génétique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We investigated the functional and biochemical variability of Kunitz trypsin inhibitor (KTI) genes of Populus trichocarpa x Populus deltoides. Phylogenetic analysis, expressed sequence tag databases, and western-blot analysis confirmed that these genes belong to a large and diverse gene family with complex expression patterns. Five wound- and herbivore-induced genes representing the diversity of the KTI gene family were selected for functional analysis and shown to produce active KTI proteins in Escherichia coli. These recombinant KTI proteins were all biochemically distinct and showed clear differences in efficacy against trypsin-, chymotrypsin-, and elastase-type proteases, suggesting functional specialization of different members of this gene family. The in vitro stability of the KTIs in the presence of reducing agents and elevated temperature also varied widely, emphasizing the biochemical differences of these proteins. Significantly, the properties of the recombinant KTI proteins were not predictable from primary amino acid sequence data. Proteases in midgut extracts of Malacosoma disstria, a lepidopteran pest of Populus, were strongly inhibited by at least two of the KTI gene products. This study suggests that the large diversity in the poplar (Populus spp.) KTI family is important for biochemical and functional specialization, which may be important in the maintenance of pest resistance in long-lived plants such as poplar.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18024557</PMID>
<DateCompleted>
<Year>2008</Year>
<Month>07</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0032-0889</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>146</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2008</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Functional analysis of the Kunitz trypsin inhibitor family in poplar reveals biochemical diversity and multiplicity in defense against herbivores.</ArticleTitle>
<Pagination>
<MedlinePgn>888-903</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>We investigated the functional and biochemical variability of Kunitz trypsin inhibitor (KTI) genes of Populus trichocarpa x Populus deltoides. Phylogenetic analysis, expressed sequence tag databases, and western-blot analysis confirmed that these genes belong to a large and diverse gene family with complex expression patterns. Five wound- and herbivore-induced genes representing the diversity of the KTI gene family were selected for functional analysis and shown to produce active KTI proteins in Escherichia coli. These recombinant KTI proteins were all biochemically distinct and showed clear differences in efficacy against trypsin-, chymotrypsin-, and elastase-type proteases, suggesting functional specialization of different members of this gene family. The in vitro stability of the KTIs in the presence of reducing agents and elevated temperature also varied widely, emphasizing the biochemical differences of these proteins. Significantly, the properties of the recombinant KTI proteins were not predictable from primary amino acid sequence data. Proteases in midgut extracts of Malacosoma disstria, a lepidopteran pest of Populus, were strongly inhibited by at least two of the KTI gene products. This study suggests that the large diversity in the poplar (Populus spp.) KTI family is important for biochemical and functional specialization, which may be important in the maintenance of pest resistance in long-lived plants such as poplar.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Major</LastName>
<ForeName>Ian T</ForeName>
<Initials>IT</Initials>
<AffiliationInfo>
<Affiliation>Centre for Forest Biology and Department of Biology, University of Victoria, Victoria, BC, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Constabel</LastName>
<ForeName>C Peter</ForeName>
<Initials>CP</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>DT502517</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2007</Year>
<Month>11</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C053865">Kunitz-type protease inhibitor, plant</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010455">Peptides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011480">Protease Inhibitors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011994">Recombinant Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D041981" MajorTopicYN="N">Gastrointestinal Tract</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018507" MajorTopicYN="N">Gene Expression Regulation, Developmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014644" MajorTopicYN="N">Genetic Variation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006790" MajorTopicYN="N">Host-Parasite Interactions</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007814" MajorTopicYN="N">Larva</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009036" MajorTopicYN="N">Moths</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005810" MajorTopicYN="N">Multigene Family</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010455" MajorTopicYN="N">Peptides</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000469" MajorTopicYN="N">parasitology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011480" MajorTopicYN="N">Protease Inhibitors</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011994" MajorTopicYN="N">Recombinant Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2007</Year>
<Month>11</Month>
<Day>21</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>7</Month>
<Day>22</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2007</Year>
<Month>11</Month>
<Day>21</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18024557</ArticleId>
<ArticleId IdType="pii">pp.107.106229</ArticleId>
<ArticleId IdType="doi">10.1104/pp.107.106229</ArticleId>
<ArticleId IdType="pmc">PMC2259082</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 1998 Jan 16;275(2):347-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9466914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Feb;37(3):370-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14731257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1997 Mar 18;254(1):73-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9108292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1990 Sep 3;269(2):328-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2401357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2005 Aug 10;53(16):6491-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16076139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Insect Physiol. 2006 Jan;52(1):21-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16243350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Insect Biochem Physiol. 2003 May;53(1):30-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12701112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Apr;143(4):1954-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17416643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 2006 Jul;63(1):108-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16755353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry (Mosc). 2004 Oct;69(10):1092-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15527408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Dec 27;102(52):19237-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16357201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1996 Nov;112(3):1201-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8938418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2002 Jan 1;30(1):347-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11752333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2002;53:299-328</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12221978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2004 Mar 15;378(Pt 3):705-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14705960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2005 May 13;330(3):921-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15809084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1990 Jan;14(1):51-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2101311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 1999 May 15;35(3):321-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10328267</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1995 Sep;109(1):73-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7480333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Biol. 2006 Apr;209(Pt 7):1301-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16547301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2004 Nov;220(1):87-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15309534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1980;49:593-626</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6996568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1993 Jul;22(4):561-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8343595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1990 Jul 2;267(1):13-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2365079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2001 Jul;57(5):625-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11397427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):13319-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12235370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):8041-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7644535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1969 Jun 10;244(11):2824-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5814447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2001 Jun;46(3):347-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11488481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta Med. 2006 Apr;72(5):393-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16557451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2002 Mar 1;291(3):635-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11855837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1997 Jun 27;269(5):881-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9223648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Chem. 2005 Jun;386(6):561-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16006243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2004 Oct;219(6):936-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15605173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein J. 2004 Jul;23(5):343-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15328890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2001 Mar;27(3):547-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11441445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;172(4):617-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17096789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2003 Jul;269(4):526-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12783302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2007 Apr;68(8):1104-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17363015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem. 1994 Mar;115(3):392-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8056748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2005 Sep;22(9):1802-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15917499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Feb 10;101(6):1607-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14757829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Growth Regul. 2000 Jun;19(2):195-216</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11038228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2001 May 11;496(2-3):134-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11356197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2006 Apr;15(5):1275-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16626454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2003 Jul;269(4):535-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12783303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Chem. 2000 Dec;381(12):1215-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11209756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2004 Dec 15;52(25):7548-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15675802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Insect Biochem Mol Biol. 2001 Apr 27;31(6-7):633-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11267902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Sep 21;101(38):13951-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15353603</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Constabel, C Peter" sort="Constabel, C Peter" uniqKey="Constabel C" first="C Peter" last="Constabel">C Peter Constabel</name>
</noCountry>
<country name="Canada">
<noRegion>
<name sortKey="Major, Ian T" sort="Major, Ian T" uniqKey="Major I" first="Ian T" last="Major">Ian T. Major</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003918 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003918 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:18024557
   |texte=   Functional analysis of the Kunitz trypsin inhibitor family in poplar reveals biochemical diversity and multiplicity in defense against herbivores.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:18024557" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020